Application Note Environmental, Water Analysis

Simplified and Fast Analysis of Perand Polyfluoroalkyl Substances in Non-potable Waters

Using ultrahigh-performance liquid chromatography with tandem mass spectrometry

Abstract

This Application Note describes a method for the separation and detection of 28 perand polyfluorinated alkyl substances (PFASs) in water samples. The method uses an Agilent 1290 Infinity II LC coupled to an Agilent 6470A triple quadrupole LC/MS system with Agilent MassHunter workstation software. All the PFASs included in the ASTM 7979 method are analyzed, and the same sample preparation protocol is used. Water samples of 5 mL are diluted with an equal volume of methanol and injected directly for a reporting limit of 10 parts per trillion (ppt, ng/L) or lower for most of the compounds.

Authors

Jerry Zweigenbaum and Hui Zhao Agilent Technologies, Inc.

Introduction

There are growing concerns about the use of PFASs due to their detection in all environmental media including air, water, and soil. Persistent chemicals have the potential to accumulate in the environment and impact the food chain, affecting fish, birds, livestock, and humans. Detection of PFASs at ppt (ng/L) levels is often required. This study evaluates a method for screening, identification, and quantification of 28 PFAS compounds at trace levels in water samples by ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC/MS/MS).

The method was evaluated in water, and quantified with external standards, showing satisfactory results including specificity, linearity, reporting limits, accuracy, and precision. This method can be used for the simultaneous detection and quantification of PFAS residues in reagent, tap, surface, ground, and wastewater matrices. Table 1 lists the PFAS compounds analyzed in this study, including the surrogates.

Table 1. PFAS compounds and their abbreviations.

Compound	Abbreviation
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate	11CI-PF30UdS
Fluorotelomer sulfonate 4:2	4-2 FTS
Fluorotelomer sulfonate 8:2	8-2 FTS
Potassium 9-chlorohexadecafluoro-3-oxanone-1-sulfonate	9CI-PF30NS
Sodium Dodecafluoro-3H-4, 8-dioxanonate	ADONA
N-methyl-d3-perfluoro-1-octanesulfonamidoacetic acid	d3-N-MeFOSAA
N-ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid	d5-N-EtFOSAA
Sodium 1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂] hexane sulfonate (4:2)	M2 4-2 FTS
Sodium 1H,1H,2H,2H-perfluoro-1- $[1,2^{-13}C_2]$ decane sulfonate (8:2)	M2 8-2 FTS
Perfluoro-n-[1,2-13C2] dodecanoic acid	M2PFDoA
Perfluoro-n-[1,2-13C2] tetradecanoic acid	M2PFTreA
Sodium perfluoro-1-[2,3,4- $^{13}C_3$] butane sulfonate	M3PFBS
Sodium perfluoro-1-[1,2,3- $^{13}C_3$] hexane sulfonate	M3PFHxS
Perfluoro-n-[1,2,3,4-13C ₄] butanoic acid	M4PFBA
Perfluoro-n-[1,2,3,4-13C4] heptanoic acid	M4PFHpA
Perfluoro- n -[1,2,3,4,6- ¹³ C ₅] hexanoic acid	M5PFHxA
Perfluoro-n-[1,2,3,4,5-13C5] pentanoic acid	M5PFPeA
Perfluoro-n-[1,2,3,4,5,6-13C ₆] decanoic acid	M6PFDA
Perfluoro-n-[1,2,3,4,5,6,7-13C ₇] undecanoic acid	M7PFUnA
Perfluoro-1-[¹³ C ₈] octane sulfonamide	M8FOSA
Perfluoro- <i>n</i> -[¹³ C ₈] octanoic acid	M8PF0A
Sodium perfluoro-[¹³ C _g] octane sulfonate	M8PF0S
Perfluoro-n-[¹³ C ₉] nonanoic acid	M9PFNA

Compound	Abbreviation
N-ethyl-N-((heptadecafluorooctyl) sulfonyl) glycine	N-EtFOSAA
N-(Heptadecafluorooctylsulfonyl)-N-methylglycine	N-MeFOSAA
Perfluorobutanoic acid	PFBA
Perfluorobutane sulfonate	PFBS
Perfluorodecanoic acid	PFDA
Perfluorododecanoic acid	PFDoA
Perfluorodecanesulfonate	PFDS
Perfluoro (2-ehoxyethane) sulfonic acid	PFEESA
Perfluoroheptanoic acid	PFHpA
Perfluoroheptanesulfonate	PFHpS
Perfluorohexanoic acid	PFHxA
Perfluorohexanesulfonate	PFHxS
Perfluoro-4-methoxybutanoic acid	PFMBA
Perfluorononanoic acid	PFNA
Perfluorononanesulfonate	PFNS
Perfluorooctanoic acid	PFOA
Perfluoro octane sulfonate	PFOS
Perfluorooctane sulfonamide	PFOSA
Perfluoropentanoic acid	PFPeA
Perfluoropentansulfonate	PFPeS
Perfluorotetradecanoic acid	PFTreA
Perfluorotridecanoic acid	PFTriA
Perfluoroundecanoic acid	PFUnA

Experimental

Equipment

All experiments in this study were performed using an Agilent 1290 Infinity II LC consisting of a G7167B multisampler, a G7120A binary pump, and a G7116B multicolumn compartment coupled to an Agilent 6470A triple quadrupole LC/MS system. Instrument control, data acquisition, qualitative and quantitative data analysis, and reporting was done using Agilent MassHunter workstation software.

Samples and standards

The study matrices were reagent water and water samples. PFAS native and surrogate mix standards were obtained from Wellington Laboratories (Guelph, Ontario, Canada). The samples and standards were stored refrigerated at 5 °C.

Method

Description

The method consisted of dispersing the water sample in methanol (1:1 v:v) followed by filtration (Captiva NY/GF 0.2 µm, p/n 5190-5132) and adjusting the pH to acidic with acetic acid. The analytical determination was performed by LC/MS using negative electrospray ionization mode. Table 2 gives the analyte-specific LC/MS conditions. The supporting method reference was ASTM 7979.

Chromatographic conditions

Parameter	Setting
Analytical Column	Agilent ZORBAX RRHD Stable Bond C18, 100 × 2.1 mm, 1.8 µm (p/n 858700-902)
Isolation Column	Agilent ZORBAX RRHD Eclipse Plus C18, 50 × 3.0 mm, 1.8 μm (p/n 959757-302)
Column Oven	50 ±2 °C
Injection Volume	30 µL
Run Time	18 minutes
Autosampler	5 ±2 °C
Mobile Phase A	0.1 % acetic acid in water
Mobile Phase B	0.1 % acetic acid in methanol

Gradient settings

Time (min)	Flow (mL/min)	%A	%В
0	0.4	95	5
14.0	0.4	5	95
15.0	0.4	0	100
18.0	0.4	0	100
18.1	0.4	95	5
25.0	0.4	95	5

MS parameters

Parameter	Setting
MS Acquisition	Dynamic MRM
Cycle Time	500 ms
Stop Time	18 minutes
Ion Source Type	Agilent Jet Stream Electrospray ionization (AJS ESI negative)
Drying Gas Temperature	250 °C
Drying Gas Flow	8 L/min
Nebulizer	25 psi
Sheath Gas Heater	375 °C
Sheath Gas Flow	12 L/min
Capillary	3,500 V
Nozzle Voltage	2,000 V
Precursor Ion and Production Ion Resolution	Unit
Compound-Specific Conditions	See Table 2

Compound Group	Compound	Туре	Precursor Ion	Product Ion	RT (min)	Delta RT (min)	Fragmentor (V)	CE (V)
Sulfonate	11CI-PF30UdS	Target	630.9	450.9	14.35	1.5	152	32
Sulfonate	11CI-PF30UdS	Target	630.9	83	14.35	1.5	152	32
FTS	4-2 FTS	Target	327	306.9	10.25	1.02	125	24
FTS	4-2 FTS	Target	327	80.9	10.25	1.02	125	44
FTS	8-2 FTS	Target	527	506.8	13.76	1.36	170	28
FTS	8-2 FTS	Target	527	80.9	13.76	1.36	170	40
Sulfonate	9CI-PF30NS	Target	530.9	350.9	13.32	1.2	152	28
Sulfonate	9CI-PF30NS	Target	530.9	83	13.32	1.2	152	32
Acid	ADONA	Target	377	250.9	11.76	1.2	54	8
Acid	ADONA	Target	377	85.1	11.76	1.2	54	32
FOSAA	d3-N-MeFOSAA	Surrogate	573	418.9	14.28	1.42	115	16
FOSAA	d5-N-EtFOSAA	Surrogate	589	418.9	14.5	1.44	115	24
FTS	M2 4-2 FTS	Surrogate	329	309	10.25	1.06	125	20
FTS	M2 8-2 FTS	Surrogate	529	509	13.76	1.36	170	28
Acid	M2PFDoA	Surrogate	614.9	570	14.96	1.49	79	8
Acid	M2PFTreA	Surrogate	715	670	15.78	2.00	100	13
Sulfonate	M3PFBS	Surrogate	302	80	9.09	1.06	100	37
Sulfonate	M3PFHxS	Surrogate	402	80	11.48	1.13	100	53
Acid	M4PFBA	Surrogate	217	172	6.12	1.31	60	8
Acid	M4PFHpA	Surrogate	367	322	11.71	1.27	72	1
Acid	M5PFHxA	Surrogate	318	273	10.59	1.12	70	4
Acid	M5PFPeA	Surrogate	268	223	8.96	1.24	60	4
Acid	M6PFDA	Surrogate	519	474	13.93	1.38	81	8
Acid	M7PFUnA	Surrogate	570	525	14.48	1.44	100	12
FOSA	M8FOSA	Surrogate	506	77.9	13.44	1.34	125	40
Acid	M8PF0A	Surrogate	421	376	12.58	1.27	69	8
Sulfonate	M8PFOS	Surrogate	507	80	12.99	1.28	100	54
Acid	M9PFNA	Surrogate	472	427	13.30	1.32	66	8
FOSAA	N-EtFOSAA	Target	584	483	14.50	1.45	115	16
FOSAA	N-EtFOSAA	Target	584	418.9	14.50	1.45	115	20
FOSAA	N-MeFOSAA	Target	570	482.9	14.28	1.42	115	12
FOSAA	N-MeFOSAA	Target	570	419	14.28	1.42	115	20
Acid	PFBA	Target	213	169	6.12	1.48	60	8
Sulfonate	PFBS	Target	298.9	98.9	9.09	1.09	100	33
Sulfonate	PFBS	Target	298.9	80	9.09	1.09	100	45
Acid	PFDA	Target	513	469	13.93	1.38	81	8
Acid	PFDA	Target	513	218.7	13.93	1.38	100	16
Acid	PFDoA	Target	613	569	14.96	1.49	79	8
Acid	PFDoA	Target	613	268.7	14.96	1.49	100	20
Sulfonate	PFDS	Target	598.9	99	14.11	1.4	100	56
Sulfonate	PFDS	Target	598.9	80	14.11	1.4	100	72

 Table 2. Analyte-specific LC/MS conditions: precursor-to-product ion transitions, fragmentor voltages, collision energies (CE), cell accelerator voltage (CAV), and retention times (RT).

Compound Group	Compound	Туре	Precursor Ion	Product Ion	RT (min)	Delta RT (min)	Fragmentor (V)	CE (V)
Acid	PFEESA	Target	314.9	135	9.73	1.00	103	24
Acid	PFEESA	Target	314.9	69.1	9.73	1.00	103	60
Acid	PFHpA	Target	362.9	319	11.71	1.16	72	1
Acid	PFHpA	Target	362.9	169	11.71	1.16	72	16
Sulfonate	PFHpS	Target	448.9	98.7	12.3	1.22	100	44
Sulfonate	PFHpS	Target	448.9	79.7	12.3	1.22	100	60
Acid	PFHxA	Target	313	268.9	10.59	1.05	70	8
Acid	PFHxA	Target	313	119	10.59	1.05	70	18
Sulfonate	PFHxS	Target	398.9	99	11.48	1.13	100	49
Sulfonate	PFHxS	Target	398.9	80	11.48	1.13	100	41
Acid	PFMBA	Target	279	85.1	9.53	1.00	54	8
Acid	PFMBA	Target	279	234.9	9.53	1.00	54	0
Acid	PFNA	Target	463	419	13.3	1.32	66	8
Acid	PFNA	Target	463	169	13.3	1.32	66	13
Sulfonate	PFNS	Target	548.9	98.9	13.58	1.34	165	48
Sulfonate	PFNS	Target	548.9	79.9	13.58	1.34	165	48
Acid	PFOA	Target	413	369	12.58	1.25	69	8
Acid	PFOA	Target	413	169	12.58	1.25	69	16
Sulfonate	PFOS	Target	498.9	99	12.99	1.27	100	46
Sulfonate	PFOS	Target	498.9	80	12.99	1.27	100	54
FOSA	PFOSA	Target	497.9	77.9	13.44	1.34	125	40
FOSA	PFOSA	Target	497.9	47.9	13.44	1.34	100	96
Acid	PFPeA	Target	263	218.9	8.97	0.96	60	4
Sulfonate	PFPeS	Target	348.9	98.9	10.47	1.03	135	36
Sulfonate	PFPeS	Target	348.9	79.9	10.47	1.03	135	44
Acid	PFTreA	Target	713	669	15.78	2.00	100	9
Acid	PFTreA	Target	713	169	15.78	2.00	100	30
Acid	PFTriA	Target	663	619	15.39	1.53	91	9
Acid	PFTriA	Target	663	169	15.39	1.53	100	30
Acid	PFUnA	Target	563	519	14.48	1.44	73	5
Acid	PFUnA	Target	563	269	14.48	1.44	100	19

Evaluation procedure

Method performance was evaluated by analyzing a representative reagent water sample (as a matrix blank) together with six replicates of QC spikes at 160 ng/L and three replicates at low spiking levels of 10 and 20 ng/L. The quantitation was performed using an external calibration curve with 1/x weight.

Evaluation criteria

System suitability

- The difference between the calculated and expected value of checking standard (CS) at 80 ng/L is within ±30 %
- The relative error (RE%) of RT of each CS to the average of standard peaks is less than 2 %

Specificity

- The RE% of RT of each analyte peak to the average of standard peaks is less than 2 %
- The ion ratio is within the tolerance of 30 %

Linearity and range

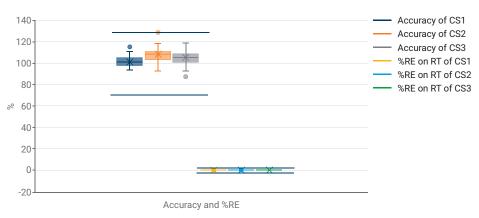
- Calibration curve has R² >0.99
- The residual of each working standard is within ±30 %
- The calibration standards should bracket the analyte concentration level

Precision

RSDs from at least three replicates are \leq 30 %.

Accuracy

Mean recovery for spiking at 160 ng/L is within 70 to 130 %, and mean recovery for spiking at 10 and 20 ng/L is within 50 to 150 %.


Results and discussion

System suitability

Suitability was determined to be acceptable if %RE of RT of all compounds including surrogates in CS did not exceed 2 %. The accuracy of all compounds in CS met the 70 to 130 % criterion, see Figure 1.

Specificity

Multiple reaction monitoring (MRM) was used for PFAS detection. Monitoring MS/MS transitions with evaluation of the ratio of their relative intensities and RT of analyte peaks enables the target analyte to be distinguished from potential interferences in quantitative analysis. Figure 2 shows an example of an extracted ion chromatogram of a 80 ng/L composite working standard (WS) containing all the analytes in 0.1 % acetic acid in 1:1 (v:v) ultrapure water:methanol. Figure 3 shows a reagent blank of 0.1 % acetic acid in 1:1 (v:v) ultrapure water:methanol.

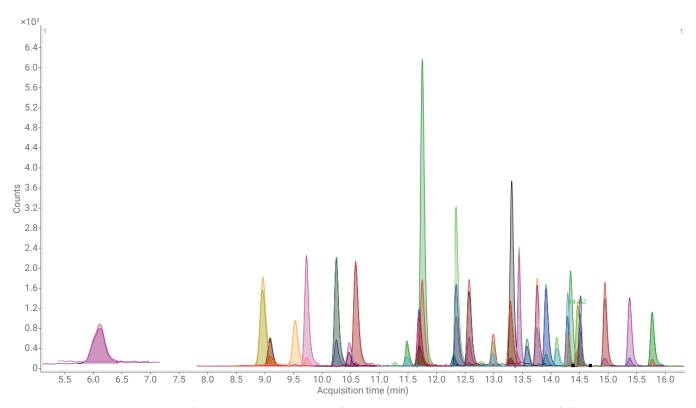


Figure 2. Extracted ion chromatogram of a composite working standard of all analytes at 80 ng/L in 0.1 % acetic acid in 1:1 (v:v) ultrapure water:methanol.

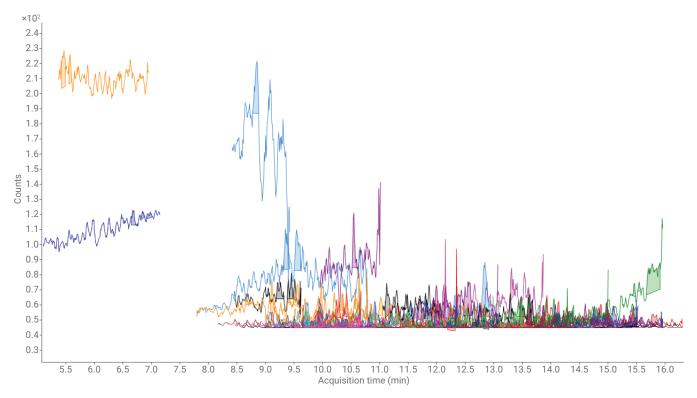


Figure 3. Extracted ion chromatogram of a reagent blank of 0.1 % acetic acid in 1:1 (v:v) ultrapure water:methanol.

Range and linearity

The method was evaluated over the range of 5 to 200 ng/L.

To evaluate the linearity of the method, WS solutions of each PFAS including the surrogates were made at 5, 10, 20, 40, 60, 80, 100, 150, and 200 ng/L. The calibration curve residuals were ≤30 % for WS1 to WS9 except for one injection of WS1 of PFHpS. Figure 4 demonstrates the statistical data of the calibration curve residuals. The linearity was determined using a linear calibration with a 1/x weighting factor. The R² values were >0.99 for all analytes.

Accuracy and precision

Accuracy was determined by fortifying samples before extraction with the analyte standard solution at levels of 10, 20, and 160 ng/L. The results were not normalized using internal standards. Eighteen isotopically labeled standards, representing different PFAS groups, were used as surrogates to monitor method and instrument performance, but were not used for response normalization as done in ASTM 7979. Internal standards were fortified at 160 ng/L for all samples.

The precision was evaluated by analysis of fortification at levels of 160 ng/L in six replicates and 10 and 20 ng/L in three replicates.

The spike recovery for accuracy and %RSD of precision met the acceptance criteria for all 28 PFASs tested. Figure 5 shows the accuracy and precision results at 160 ng/L. Table 3 shows the detailed accuracy and precision results at 10 and 20 ng/L.

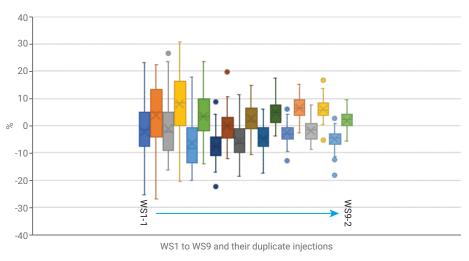


Figure 4. Calibration curve residual for working standards.

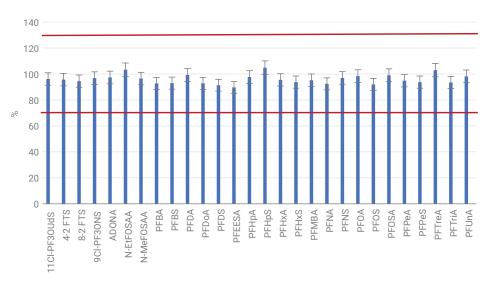


Figure 5. Accuracy (spike recovery, %) and precision (%RSD) at 160 ng/L (n = 6).

Method reporting limits

The method determined reporting limits (RLs) rather than limits of quantitation (LOQs). These were determined for each analyte as the spiking levels of 10 and 20 ng/L that met the evaluation criteria

for recoveries and RSD of precision, see Table 3. The RL for each PFAS analyte was set at 10 ng/L, except PFDS and PFHpS, which were set at 20 ng/L. In practice, RLs of <10 ng/L for many of the compounds could be achieved and for ultimate sensitivity users can employ the Agilent 6495 Triple Quadrupole LC/MS.

		Spike Reco	very, % at 1	0 ng/L On N	/latrix		Spike Recovery, % at 20 ng/L On Matrix						
Compound	LOQ-10-1	L0Q-10-2	LOQ-10-3	Average	STD	RSD %	L0Q-20-1	L0Q-20-2	LOQ-20-3	Average	STD	%RSD	
11CI-PF30UdS	121	117	120	119	2.2	1.8	112	120	118	116	4.2	3.6	
4-2 FTS	122	111	111	115	6.6	5.8	87	103	97	96	8.2	8.6	
8-2 FTS	95	121	93	103	15.6	15.2	113	115	114	114	0.9	0.8	
9CI-PF30NS	106	124	102	110	11.6	10.5	116	104	103	108	7.4	6.8	
ADONA	94	111	117	107	11.9	11.1	97	103	107	102	4.7	4.6	
d3 N-MeFOSAA	89	100	105	98	8.4	8.5	90	97	104	97	7.3	7.5	
d5-N-EtFOSAA	100	99	108	102	5.0	4.9	100	97	99	99	1.4	1.4	
M2 4-2 FTS	96	108	89	98	9.6	9.9	96	101	100	99	2.6	2.7	
M2 8-2 FTS	91	95	96	94	2.9	3.1	89	103	97	97	6.8	7.1	
M2PFDoA	96	105	90	97	7.8	8.0	93	100	107	100	7.3	7.3	
M2PFTreA	99	100	97	99	1.5	1.6	99	98	95	97	1.7	1.8	
M3PFBS	99	114	99	104	9.0	8.7	95	101	105	100	5.1	5.1	
M3PFHxS	99	112	101	104	6.9	6.6	94	107	98	100	6.7	6.7	
M4PFBA	89	94	92	92	2.6	2.8	91	95	90	92	2.7	3.0	
M4PFHpA	98	94	94	95	2.0	2.1	96	93	91	93	2.7	2.9	
M5PFHxA	95	104	93	97	6.2	6.4	98	99	97	98	1.1	1.1	
M5PFPeA	92	97	91	94	3.3	3.5	91	95	93	93	2.3	2.4	
M6PFDA	97	110	92	100	9.6	9.6	95	95	96	96	0.6	0.7	
M7PFUnA	96	101	98	98	2.4	2.5	96	99	102	99	2.8	2.9	
M8 FOSA	98	103	96	99	3.6	3.7	91	100	98	96	4.8	5.0	
M8PF0A	93	102	99	98	4.8	4.9	90	92	98	94	4.2	4.5	
M8PF0S	96	103	105	101	4.5	4.5	92	99	98	97	3.9	4.0	
M9PFNA	84	95	89	89	5.6	6.3	91	98	94	94	3.6	3.9	
N-EtFOSAA	122	137	107	122	15.0	12.3	113	107	112	111	3.0	2.7	
N-MeFOSAA	104	139	110	118	19.2	16.4	106	141	106	117	20.1	17.1	
PFBA	105	88	108	101	10.8	10.7	95	116	101	104	11.1	10.6	
PFBS	105	118	100	108	9.0	8.4	118	113	121	117	3.8	3.2	
PFDA	115	89	126	110	18.8	17.1	107	114	100	107	7.0	6.6	
PFDoA	114	102	87	101	13.4	13.3	117	90	109	106	14.0	13.3	
PFDS	38	81	76	65	23.4	36.0	90	106	75	90	15.1	16.7	
PFEESA	55	53	56	55	1.3	2.3	130	130	116	125	7.7	6.1	
PFHpA	107	146	123	125	19.3	15.4	101	131	108	114	15.5	13.6	
PFHpS	56	115	77	83	29.4	35.5	117	139	131	129	11.2	8.7	
PFHxA	99	106	109	104	5.2	5.0	103	120	131	118	13.8	11.7	
PFHxS	98	126	117	114	14.3	12.6	104	88	110	100	11.3	11.3	

		Spike Reco	very, % at 1	0 ng/L On M	/latrix		Spike Recovery, % at 20 ng/L On Matrix						
Compound	LOQ-10-1	LOQ-10-2	LOQ-10-3	Average	STD	RSD %	LOQ-20-1	L0Q-20-2	LOQ-20-3	Average	STD	%RSD	
PFMBA	135	147	140	141	5.9	4.2	123	132	121	125	5.8	4.6	
PFNA	83	121	101	102	19.1	18.8	101	99	117	106	10.0	9.4	
PFNS	87	122	90	100	19.3	19.4	96	128	93	106	19.3	18.2	
PFOA	118	136	109	121	13.4	11.1	99	119	106	108	9.9	9.1	
PFOS	92	108	90	97	9.6	9.9	136	98	115	116	18.9	16.3	
PFOSA	82	99	102	94	10.5	11.1	86	104	91	94	9.4	10.0	
PFPeA	103	102	109	105	4.1	3.9	113	113	107	111	3.2	2.9	
PFPeS	101	99	117	106	9.8	9.3	103	82	111	99	15.4	15.6	
PFTreA	91	106	103	100	8.0	8.0	112	98	97	102	8.6	8.4	
PFTriA	102	116	95	105	10.6	10.1	114	102	101	106	6.9	6.6	
PFUnA	120	128	100	116	14.4	12.4	107	107	105	106	1.2	1.1	

Sample tests

The evaluated method was applied to several unknown water samples. The sample results and the surrogate spike recovery are shown in Table 4. The surrogate spike recoveries were within 70 to 130 %, and met the acceptance criteria for all PFASs tested.

Table 4. Sample results and surrogate spike recoveries for water samples (continued next page).

			Sample Re	sults, ng/L			Surrogate Spike Recovery, % at 160 ng/L On Matrix					
Compound	Water Unknown Sample 1	Water Unknown Sample 2	Water Unknown Sample 3	Water Unknown Sample 4	Water Unknown Sample 5	Water Unknown Sample 6	Water Unknown Sample 1	Water Unknown Sample 2	Water Unknown Sample 3	Water Unknown Sample 4	Water Unknown Sample 5	Water Unknown Sample 6
11CI-PF30UdS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
4-2 FTS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
M2 4-2 FTS	165.5	178.6	163.4	159.7	160.8	148.2	111	119	109	107	108	99
8-2 FTS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
M2 8-2 FTS	178.1	196.0	187.1	160.8	184.8	164.1	116	128	122	105	120	107
9CI-PF30NS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
ADONA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
N-EtFOSAA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
d5-N-EtFOSAA	205.8	191.1	195.7	181.2	190.6	177.1	129	119	122	113	119	111
N-MeFOSAA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
d3 N-MeFOSAA	192.2	200.2	192.8	174.5	189.9	162.2	120	125	120	109	119	101
PFBA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
M4PFBA	164.6	175.0	167.0	165.7	143.3	150.8	103	109	104	104	90	94
PFBS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
M3PFBS	183.9	178.0	179.5	176.8	165.1	164.3	124	120	121	119	111	110
PFDA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>						
M6PFDA	167.1	204.2	189.1	147.7	198.4	171.4	104	128	118	92	124	107

			Sample Re	sults, ng/L			Surrogate Spike Recovery, % at 160 ng/L On Matrix						
Compound	Water Unknown Sample 1	Water Unknown Sample 2	Water Unknown Sample 3	Water Unknown Sample 4	Water Unknown Sample 5	Water Unknown Sample 6	Water Unknown Sample 1	Water Unknown Sample 2	Water Unknown Sample 3	Water Unknown Sample 4	Water Unknown Sample 5	Water Unknown Sample 6	
PFDoA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M2PFDoA	180.6	187.8	195.2	156.9	193.9	193.7	113	117	122	98	121	121	
PFDS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFEESA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFHpA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M4PFHpA	172.7	186.5	173.7	157.5	160.6	165.5	108	117	109	98	100	103	
PFHpS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFHxA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M5PFHxA	182.0	192.1	180.9	171.9	177.5	170.6	114	120	113	107	111	107	
PFHxS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M3PFHxS	179.1	187.9	171.5	171.0	170.4	144.9	118	124	113	113	113	96	
PFMBA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFNA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M9PFNA	187.5	198.3	200.4	180.2	180.7	161.5	117	124	125	113	113	101	
PFNS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFOA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M8PF0A	169.2	182.1	203.8	170.2	175.2	167.9	106	114	127	106	109	105	
PFOS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M8PFOS	191.8	189.1	164.7	175.3	170.2	168.2	125	123	108	114	111	110	
PFOSA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M8PFOSA	199.7	206.4	193.1	174.3	196.1	184.4	125	129	121	109	123	115	
PFPeA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M5PFPeA	175.7	172.9	170.5	165.5	160.7	164.7	110	108	107	103	100	103	
PFPeS	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFTreA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M2PFTreA	137.7	114.4	166.0	134.2	174.1	138.5	86	72	104	84	109	87	
PFTriA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
PFUnA	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></rl<>							
M7PFUnA	204.3	192.9	197.0	156.9	190.1	197.5	128	121	123	98	119	123	

Note: Empty cells for surrogate recovery indicate that no stable isotope standard was available or included for the native compound in this study.

Conclusions

A UHPLC/MS/MS method was presented for the quantitative analysis of 28 PFASs in water samples using a 1290 Infinity II LC coupled to a 6470A triple quadrupole LC/MS system with MassHunter workstation software. The evaluation demonstrated that the method can achieve adequate specificity, linearity, accuracy, and precision for analysis of the listed PFAS analytes in water. For additional sensitivity required beyond levels in ASTM 7979 or EPA draft method 8327, the Agilent 6495 triple quadrupole LC/MS can be employed.

www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Printed in the USA, February 14, 2019 5994-0678EN

